Integral Orthogonal Bases of Small Height for Real Polynomial Spaces
نویسنده
چکیده
Let PN (R) be the space of all real polynomials in N variables with the usual inner product 〈 , 〉 on it, given by integrating over the unit sphere. We start by deriving an explicit combinatorial formula for the bilinear form representing this inner product on the space of coefficient vectors of all polynomials in PN (R) of degree ≤ M . We exhibit two applications of this formula. First, given a finite dimensional subspace V of PN (R) defined over Q, we prove the existence of an orthogonal basis for (V, 〈 , 〉), consisting of polynomials of small height with integer coefficients, providing an explicit bound on the height; this can be viewed as a version of Siegel’s lemma for real polynomial inner product spaces. Secondly, we derive a criterion for a finite set of points on the unit sphere in RN to be a spherical M -design.
منابع مشابه
New Bases for Polynomial-Based Spaces
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...
متن کاملA Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases
In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...
متن کاملControl point based exact description of curves and surfaces, in extended Chebyshev spaces
Extended Chebyshev spaces that also comprise the constants represent large families of functions that can be used in real-life modeling or engineering applications that also involve important (e.g. transcendental) integral or rational curves and surfaces. Concerning computer aided geometric design, the unique normalized B-bases of such vector spaces ensure optimal shape preserving properties, i...
متن کاملTau Numerical Solution of Volterra Integro-Differential Equations With Arbitrary Polynomial Bases
متن کامل
Wavelet Analysis in Spaces of Slowly Growing Splines via Integral Representation
In this paper we consider polynomial splines with equidistant nodes which may grow as O|x|. We present an integral representation of such splines with a distribution kernel where exponential splines are used as basic functions. By this means we characterize splines possessing the property that translations of any such spline form a basis of corresponding spline space. It is shown that any such ...
متن کامل